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Abstract

Ultrasonic technique was employed to extract polysaccharides from longan fruit pericarp (PLFP). The optimal conditions for ultra-
sonic extraction of PLFP were determined by response surface methodology. Box—Behnken design was applied to evaluate the effects of
three independent variables (ultrasonic power, time and temperature) on the recovery and 1,1’-diphenyl-2-picrylhydrazyl (DPPH) radical
scavenging activity of PLFP. The correlation analysis of two mathematical-regression models indicated that quadratic polynomial model
could be employed to optimize the ultrasonic extraction of PLFP. From response surface plots, ultrasonic power, time and temperature
exhibited independent and interactive effects on the extraction of PLFP. The DPPH radical scavenging activity of PLFP could be
improved by application of various ultrasonic power, time and temperature, which was possible due to the degradation of polysaccha-
rides to different extent. The optimal conditions to obtain the highest recovery and the strongest DPPH radical scavenging activity of
PLFP were 120 W, 22 min and 60 °C, as well as 241 W, 18 min and 51 °C, respectively. Under these optimal conditions, the experimental
values agreed with the predicted ones by analysis of variance. It indicated high fitness of two models used and the success of response
surface methodology for optimizing PLFP extraction.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction Ultrasonic treatment has been widely employed to

extract polysaccharides from different plant materials

Longan (Dimocarpus longan Lour.) is an important fruit
in Southeast Asia (Jiang, Zhang, Joyce, & Ketsa, 2002).
Longan fruit pericarp contains a significant amount of
polysaccharides. A great deal of attention has been paid
to polysaccharides for their unique biological, chemical
and physical properties in recent years (Schepetkin &
Quinn, 2006), and useful applications in developments of
therapeutic drugs in modern medicine (Li, Zhou, & Han,
2006).
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(Hromadkova & Ebringerova, 2003), because ultrasonic
treatment has mechanical effects that facilitate mass trans-
fer between immiscible phases through a super agitation,
especially at low frequency (Vinatoru et al., 1997). How-
ever, ultrasonic wave has degradation effects on polysac-
charides. The changes in structure and degradation of
polysaccharides depend on power and operating parame-
ters (Mislovicova, Masarova, Bendzalova, Soltes, & Mach-
ova, 2000; Zhou & Ma, 2006).

The formation of some diseases, such as cancer, can be
directly induced by free radicals, while the radical scaveng-
ing activity is one of the important functional properties
for bioactive compounds (Athukorala, Kim, & Jeon,
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2006). The DPPH radical scavenging activity is often used
to evaluate the capacity of antioxidant compounds (Prior
& Cao, 1999). Recent studies demonstrated that the antiox-
idant activity of polysaccharides was related to their degree
of polymerization and structure (Chen & Yan, 2005).
Under various ultrasonic conditions, the molecular weight
and structure of PLFP would be modified, which influ-
enced the DPPH radical scavenging activity.

The objective of this study was to investigate the effect of
ultrasonic technique on polysaccharide extraction yield and
bioactivity of polysaccharides during the extraction pro-
cess. Response surface methodology is a statistical method
that uses quantitative data from an appropriate experimen-
tal design to determine or simultaneously solve multivari-
ate equation (Triveni, Shamala, & Rastogi, 2001).
Besides, this experimental methodology can generate a
mathematical model (Bas & Boyaci, 2007). In this study,
ultrasonic technique was employed to extract polysaccha-
rides from longan fruit pericarp (PLFP). Response surface
methodology was used to evaluate the effects of ultrasonic
power, time and temperature on the recovery and DPPH
radical scavenging activity of PLFP to obtain the optimal
extraction conditions.

2. Materials and methods
2.1. Materials

Fresh longan fruits (Dimocarpus longan Lour. cv. Shi-
xia) at the commercially mature stage were purchased from
a commercial market in Guangzhou, China. Fruits were
selected for uniformity of shape and colour.

2.2. Chemicals

DPPH was purchased from Sigma chemical company
(St. Louis, MO, USA). Glucose, phenol and sulphuric acid
were obtained from Guangzhou Reagent Co. (Guangzhou,
China). All other chemicals used were of analytical grade.

2.3. Extraction and quantification of PLFP

Pericarp tissues (4 g) of longan fruit were immersed into
100 ml of distilled water. The extraction process was per-
formed wusing an ultrasonic cleaner (SB-5200DTD,
40 kHz, Xinzhi Biotech Co., Ningbo, China,) with different
ultrasonic power, temperature and time. The extract was
filtered through a Whatman No. 1 filter paper and the fil-
trate was then concentrated to 25 ml with a rotary evapo-
rator at 65 °C under vacuum. The proteins in the extract
were removed using the Sevag reagent (Navarini et al.,
1999). After removal of the Sevag reagent, 100 ml of anhy-
drate ethanol was added, then the mixture was kept in a
beaker overnight at 4 °C to precipitate polysaccharides.
PLFP was obtained by centrifugation at 3860g for
15 min. The content of polysaccharides was determined
by the phenol-sulphuric acid method (Dubois, Gilles,

Hamilton, Rebers, & Smith, 1956). Glucose was used to
construct a standard curve. The recovery of PLFP was
expressed as mg of glucose equivalents (GE) per gram of
longan fruit pericarp on dry weight (DW) basis.

2.4. Assay of DPPH radical scavenging activity

The DPPH radical scavenging activity was measured by
the method of Yang et al. (2006). PLFP extract was dis-
solved in 10 ml of distilled water to a final concentration
of 100 pg/ml. Two millilitre of 0.2 mM DPPH in ethanol
was added to 1 ml of the PLFP solution. The absorbance
was measured at 517 nm after 20 min of incubation at
25 °C. Distilled water was used as the control. The scaveng-
ing activity of DPPH radicals by the sample was calculated
according to the following equation: DPPH radical scav-
enging activity (%)= (1 — absorbance of sample/absor-
bance of control) x 100.

2.5. Box—Behnken design

The software Design Expert (Trial Version 7.0.3, Stat-
Ease Inc., Minneapolis, MN, USA) was employed for
experimental design, data analysis and model building. A
Box—Behnken design with three variables (Box & Behnken,
1960) was used to determine the response pattern and then
to establish a model. Three variables used in this study
were ultrasonic power (X)), time (X,) and temperature
(X3), with three levels of each variable, while the dependent
variables were the recovery and DPPH radical scavenging
activity of PLFP, respectively. The symbols and levels are
shown in Table 1. Five replicates at the centre of the design
were used to allow for estimation of a pure error sum of
squares. Experiments were randomised to maximise the
effects of unexplained variability in the observed responses
due to extraneous factors. A full quadratic equation or the
diminished form of this equation, shown as follows, was
used for this model

k k
Y:ﬁ0+2ﬂ_in+Zﬁj‘ 12‘+ZZ'BUX"X” (1)
j=1 Jj=1

i<j

where Y is the estimated response and f, f3;, f;; and f; are
the regression coefficients for intercept, linearity, square
and interaction, respectively, while X; and X; are the inde-
pendent variables coded.

3. Results and discussion

3.1. Effects of ultrasonic power, time and temperature on the
recovery of PLFP

The mechanism of ultrasonic extraction involves two
processes of physical activity: the dissolution of the extrac-
tive substances near the particle surface (rinsing) and the
diffusion from the solid particles to the bulk of the liquid
extract (slow extraction) (Vinatoru, 2001). The effects of
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Table 1
Box—Behnken design and the responses for the recovery and DPPH radical scavenging activity of PLFP
Experiments Coded levels Responses
X1 X2 X3 Recovery DPPH radical scavenging activity
Ultrasonic Ultrasonic Ultrasonic (mg GE/g DW) (*0)
power (W) time (min) temperature (°C)
1 —1(120) 0 (20) —1(30) 5.02 233
2 -1 (120) -1 (10) 0 (45) 4.66 239
3 —1(120) 0 (20) +1 (60) 5.43 29.6
4 -1 (120) +1 (30) 0 (45) 4.95 28.0
5 0 (210) —1(10) —1(30) 4.19 23.5
6 0 (210) —1(10) +1 (60) 4.49 334
7 0 (210) 0 (20) 0 (45) 4.25 36.2
8 0 (210) 0 (20) 0 (45) 4.16 38.6
9 0 (210) 0 (20) 0 (45) 4.35 37.8
10 0(210) +1 (30) +1 (60) 4.06 34.9
11 0 (210) +1 (30) —1(30) 3.64 332
12 0 (210) 0 (20) 0 (45) 4.14 36.4
13 0 (210) 0 (20) 0 (45) 4.26 39.9
14 +1 (300) 0 (20) +1 (60) 3.82 329
15 +1 (300) —1(10) 0 (45) 3.89 38.6
16 +1 (300) +1 (30) 0 (45) 3.36 30.4
17 +1 (300) 0 (20) —1(30) 3.60 28.0

ultrasonic power, time and temperature on the recovery of
PLFP as well as their interactions are shown in Fig. 1. The
extending ultrasonic time could result in a higher extrac-
tion recovery. However, the recovery of PLFP decreased
with the extension of ultrasonic time when a high ultra-
sonic power was used, which was possibly due to the deg-
radation of polysaccharides by ultrasonic wave.
According to the reports of Li, Guo, and Li (2005) as well
as Sivakumar and Pandit (2001), application of high ultra-
sonic power results in degradation effect. At high ultrasonic
temperature, the liquid viscosity and density decreases and
has fast mass transfer (Hemwimol, Pavasant, & Shotipruk,
2006). Furthermore, high ultrasonic temperature leads to
the increase of cavitation bubble number and surface con-
tact area (Palma & Barroso, 2002). Thus, an appropriate
high ultrasonic temperature can enhance the extraction
efficiency.

3.2. Effects of ultrasonic power, time and temperature on the
DPPH radical scavenging activity of PLFP

The effects of ultrasonic power, time and temperature
on the DPPH radical scavenging activity of PLFP as well
as their interactions are shown in Fig. 2. As shown in
Fig. 2a, the DPPH radical scavenging activity of PLFP
increased with the extension of ultrasonic time at low
ultrasonic power, but decreased at high ultrasonic power.
When the ultrasonic time and temperature were kept
constant within the range under investigation, the DPPH
radical scavenging activity of PLFP increased to a value
with elevating ultrasonic power, thereafter decreased
(Fig. 2a and b). The similar phenomenon was also found
for ultrasonic temperature used in this study (Fig. 2b
and c).

The model of scavenging the stable DPPH radical is a
widely used method to evaluate antioxidant activities in a
relatively short time compared with other methods (Yuan
et al., 2005). This method is based on the reduction of eth-
anolic DPPH™ solution in the presence of a hydrogen
donating antioxidant, leading to the formation of non-rad-
ical form DPPH-H. The polysaccharide extract is able to
reduce the stable radical DPPH™ to yellow-coloured diph-
enylpicrylhydrazine. The positive correlation between poly-
saccharide concentration and its antioxidant activity is well
documented (Li, Li, & Zhou, 2007). The antioxidant activ-
ity of polysaccharides is high related to their chemical
structure (Rao & Muralikrishna, 2006). In this study, ultra-
sonic power, time and temperature showed apparent influ-
ences on the DPPH radical scavenging activity of PLFP.
The possible mechanism should be the degradation of
PLFP and further changes in chemical structure induced
by ultrasonic treatment.

3.3. Model fitting

The mathematical models representing the recovery and
DPPH radical scavenging activity of PLFP as a function of
the independent variables within the region under investi-
gation were expressed by the following equation:

Y1 =4.23-0.67X; —0.15X, +0.17X5 — 0.21X 1 X»
—0.048X X5 +0.03X,X5 +0.18X7 — 0.19X3 + 0.058X3
(2)
Y, =37.78 +3.14X, +0.89X, +2.85X 5 — 3.08X , X,
—0.35X X3 — 2.05X,X 5 — 5.18X7 — 2.38X3 — 4.15X73,
(3)
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Fig. 1. Response surface plots showing effects of ultrasonic power, time
and temperature on the recovery of PLFP and their interaction. (a) The
ultrasonic temperature was constant at 45 °C. (b) The ultrasonic time was

constant for 20 min. (c) The ultrasonic power was constant at 210 W.
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Fig. 2. Response surface plots showing effects of ultrasonic power, time
and temperature on the DPPH radical scavenging activity of PLFP. (a)
The ultrasonic temperature was constant at 45 °C. (b) The ultrasonic time
was constant for 20 min. (c¢) The ultrasonic power was constant at 210 W.
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Table 2
Analysis of variance for the response surface quadratic model for the
recovery and DPPH radical scavenging activity of PLFP

Source Degrees of Sum of Mean F-value  P-value
freedom squares square

The recovery

Model 9 4.52 0.50 22.78 0.0002

Residual 7 0.15 0.022

Lack of fit 3 0.13 0.042 5.84 0.0606

Pure error 4 0.029 0.007

Total 16 4.67

The DPPH radical scavenging activity

Model 9 436.21 48.47 6.90 0.0093

Residual 7 49.20 7.03

Lack of fit 3 39.63 13.21 5.52 0.0661

Pure error 4 9.57 2.39

Total 16 485.42

where Y; and Y, are the recovery and DPPH radical scav-
enging activity of PLFP, respectively, whereas X, X, and
X3 are the coded variables for ultrasonic power, time and
temperature, respectively.

In general, exploration and optimization of a fitted
response surface may produce poor or misleading results
unless the model exhibits a good fit, which checks the
model adequacy essential (Liyana-Pathirana & Shahidi,
2005). The P-values of two models for the recovery and
DPPH radical scavenging activity of PLFP were 0.0002
and 0.0093 ( Table 2), respectively, which indicated that
the fitness of both models were significant. However, the
fit values of two models exhibited 0.0606 and 0.0661,
respectively, without significant difference.

Coefficient (R?) of determination is defined as the ratio of
the explained variation to the total variation and is a mea-
surement of the degree of fitness (Nath & Chattopadhyay,
2007). The small value of R* indicates the poor relevance
of the dependent variables in the model. The model can fit
well with the actual data when R? approaches unity (Sin,
Yusof, Hamid, & Rahman, 2006). Analysis of variance, the
R?values of the two models for the recovery and DPPH rad-
ical scavenging activity of PLFP were determined to be 0.967
and 0.899, respectively, which showed that the regression
models defined well the true behavior of the system.

By prediction of computing program, the optimal condi-
tions to obtain the highest recovery and DPPH radical
scavenging activity of PLFP were determined as follows:
120 W, 22 min and 60 °C, and 241 W, 18 min and 51 °C,
respectively. After extraction of PLFP under these optimal
conditions, the recovery and DPPH radical scavenging
activity of PLFP were 5.47 +£0.16 mg GE/g DW and
38.72 £+ 0.19%, but they were not significantly different to
predicted values 5.37 mg GE/g DW and 38.78% within
95% confidence interval.

4. Conclusions

The high correlation of two mathematical models indi-
cated that quadratic polynomial model could be employed

to optimize ultrasonic extraction process and DPPH radi-
cal scavenging activity of PLFP. From response surface
plots, three factors (ultrasonic power, time and tempera-
ture) significantly influenced the extraction efficiency of
PLFP, independently and interactively. The optimal condi-
tions to obtain the highest recovery and strongest DPPH
radical scavenging activity of PLFP were determined to
be 120 W, 22 min and 60 °C, as well as 241 W, 18 min
and 51 °C, respectively. Under the optimal conditions,
the experimental values agreed with the predicted values
by analysis of variance. Thus, this methodology could pro-
vide a basis for the model to search for non-linear nature
between independent variables and response in a short-
term experiment.
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